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COVERAGE

Availability of the network for one user (test users) in the
space.
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COVERAGE

Availability of the network for one user (test users) in the
space.

Stochastic geometry provides simple models and tools.

Information theory suggests more adequate coverage
models.

Quantitative results with Poisson process modeling
transmitters in the space.

We shall present the SINR (or shot-noise) coverage
model for cellular networks and its relations to
Poisson-Dirichlet processes.
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CONNECTIVITY

Multi-hop connecting at least two users (source and
destination) distant in space. Existence of routes.

– p. 4



CONNECTIVITY

Multi-hop connecting at least two users (source and
destination) distant in space. Existence of routes.

Percolation theory provides tools to study macroscopic
connectivity.

First passage percolation to study the speed of message
propagation on long routes.

Mostly qualitative results.

Comparisons methods for non-Poisson models.

We shall present some results on connectivity and
routing on the SINR graph.
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CAPACITY

Ability to serve simultaneously many users. How many?
Quality of service in function to the number of served
users.
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CAPACITY

Ability to serve simultaneously many users. How many?
Quality of service in function to the number of served
users.

Queueing theory in association with stochastic geometry.

Space-time models. Simulations required for quantitative
results.

We shall present some model capturing the dependence
between the traffic demand and the quality of service in
large cellular networks, validated w.r.t. some real data.
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OUTLINE

Poisson point process,

Germ-grain coverage models in stochastic geometry,

SINR (or shot-noise) coverage model,

Palm and stationary coverage characteristics,

Relations to Poisson-Dirichlet processes.
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Poisson point process

DEF. Poisson point process Φ of intensity λ on the plane R2

Number of Points Φ(B) of Φ in subset B of the plane is
Poisson random variable with parameter λ|B|, where | · |
is the Lebesgue measure on the plane; i.e.,

P{Φ(B) = k } = e−λ|B| (λ|B|)k

k!
,

Numbers of points of Φ in disjoint sets are independent.
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Laplace transform of Poisson process

FACT Laplace transform of the Poisson process

LΦ(h) = E[e
∫
h(x) Φ(dx)] = e−λ

∫
(1−eh(x)) dx ,

where h(·) is a real function on the plane and
∫
h(x) Φ(dx) =

∑

Xi∈Φ h(Xi).
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Slivnyak’s theorem

THM Conditioning Poisson process on having a point at
some location, say at the origin 0, does not modify the
distribution of other points.

P0{Φ \ 0 ∈ Γ} = P{Φ ∈ Γ} ,

where Γ is some subset of realizations of Φ (configurations
of points).
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Slivnyak’s theorem

THM Conditioning Poisson process on having a point at
some location, say at the origin 0, does not modify the
distribution of other points.

P0{Φ \ 0 ∈ Γ} = P{Φ ∈ Γ} ,

where Γ is some subset of realizations of Φ (configurations
of points).

More formally, P0 is called Palm probability and defined

P0{Φ ∈ Γ} = 1
λ|B|E

[
∑

Xi∈Φ∩B 1(Φ − Xi ∈ Γ)
]

,

with any B: 0 < |B| < ∞.

Under P0, the origin 0 ∈ Φ is called the typical point of Φ.
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Poisson process as a limit

Random independent thinning of points of arbitrary point
process (pp) converges to Poisson pp, provided the
retention probability goes to 0, and the process is
rescaled to preserve constant intensity.
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Poisson process as a limit

Random independent thinning of points of arbitrary point
process (pp) converges to Poisson pp, provided the
retention probability goes to 0, and the process is
rescaled to preserve constant intensity.

Random independent displacement of points of pp
converges to Poisson pp, provided ...
cf e.g. [Daley&Vere-Jones 1988]
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Poisson process as a limit

Random independent thinning of points of arbitrary point
process (pp) converges to Poisson pp, provided the
retention probability goes to 0, and the process is
rescaled to preserve constant intensity.

Random independent displacement of points of pp
converges to Poisson pp, provided ...
cf e.g. [Daley&Vere-Jones 1988]

In wireless network context: Arbitrary homogeneous
network of transmitters with strong random propagation
effects is perceived at a given location as an equivalent
Poisson network without shadowing.

see Dominic Schuhmacher’s talk
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Germ-grain coverage models
in stochastic geometry
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General germ-grain coverage model

Germ-Grain (GG) coverage model {(Xi, Ci)}, where {Xi}
are germs forming a point process Φ on Rd, and
Ci = Ci(Xi,Φ) are, possibly dependent, random closed
subsets of Rd, called grains.

Germ – communicating device
Grain – its coverage region
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General germ-grain coverage model

Germ-Grain (GG) coverage model {(Xi, Ci)}, where {Xi}
are germs forming a point process Φ on Rd, and
Ci = Ci(Xi,Φ) are, possibly dependent, random closed
subsets of Rd, called grains.

Germ – communicating device
Grain – its coverage region

Voronoi tessellation and Boolean Model are special cases of
GG coverage model.
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Voronoi tessellation (VT)

Ci = {y ∈ R
d : |y − x| ≤ |y − Xi| ∀Xi ∈ Φ}

Borders of Voronoi Cells
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Boolean model (BM)

Ci = Xi ⊕ Gi = {Xi + y : y ∈ Gi} ,

where, given Φ = {Xi}, Gi are i.i.d. random closed
(compact) sets in Rd.

r
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Coverage probabilities

Let {(Xi, Ci)} be a general stationary GG model. In
particular, Φ = {Xi} is a stationary point process. One
considers two types of coverage characteristics:
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Coverage probabilities

Let {(Xi, Ci)} be a general stationary GG model. In
particular, Φ = {Xi} is a stationary point process. One
considers two types of coverage characteristics:

Coverage by the typical grain
p(x) := P0{x ∈ C0} where x ∈ Rd and C0 = C(0,Φ) the
grain attached to the typical point X0 = 0 of Φ considered
under its Palm distribution P0.
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Coverage probabilities

Let {(Xi, Ci)} be a general stationary GG model. In
particular, Φ = {Xi} is a stationary point process. One
considers two types of coverage characteristics:

Coverage by the typical grain
p(x) := P0{x ∈ C0} where x ∈ Rd and C0 = C(0,Φ) the
grain attached to the typical point X0 = 0 of Φ considered
under its Palm distribution P0.
Stationary coverage

p := P
{

0 ∈
⋃

i Ci

}

arbitrary location 0 covered by the union.
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Stationary coverage number

More generally, denote by N , the number of grains covering
the origin 0

N :=
∑

i

1(0 ∈ Ci)

and its (stationary) distribution by

pk := P{N ≥ k} .

pk is called stationary k-coverage probability
Obviously, p = p1 = P{0 ∈

⋃

i Ci} stationary coverage
probability.
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Exercise: coverage in Poisson-VT

Typical cell coverage

p(x) := P0
{

|x − 0| ≤ |x − Xi| ∀0 6= Xi ∈ Φ
}

Slivnyak = P{Φ(Bx(|x|)) = 0}

Poisson definition = e−λκd|x|d ,

where Ba(r) = {y : |y − a| ≤ r} and κd = |B0(1)| and λ is
the intensity of Poisson Φ.

– p. 19



Exercise: coverage in Poisson-VT

Typical cell coverage

p(x) := P0
{

|x − 0| ≤ |x − Xi| ∀0 6= Xi ∈ Φ
}

Slivnyak = P{Φ(Bx(|x|)) = 0}

Poisson definition = e−λκd|x|d ,

where Ba(r) = {y : |y − a| ≤ r} and κd = |B0(1)| and λ is
the intensity of Poisson Φ.

Stationary coverage: (Almost) trivially

pk := P
{

#{i : 0 ∈ Vi} ≥ k
}

= 1 for k = 1 and 0 for k ≥ 2.

Indeed, VT is a partition of Rd modulo boundaries of the
cells, on which 0 lies with probability P = 0.
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Exercise: coverage in Poisson-BM

Typical grain coverage
By the Slivnyk’s theorem and the independence of grains Gi

p(x) := P0{x ∈ 0 ⊕ G0} = P{x ∈ G0} is given directly by
the generic grain G distribution.
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Exercise: coverage in Poisson-BM

Stationary coverage: N is Poisson(λE[|Ǧ|]), where
Ǧ = {−y : y ∈ G}.
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Exercise: coverage in Poisson-BM

Stationary coverage: N is Poisson(λE[|Ǧ|]), where
Ǧ = {−y : y ∈ G}. Indeed:

pk : = P
{

#{i : 0 ∈ Xi ⊕ Gi} ≥ k
}

= P{Φ′(Rd) ≥ k} ,

where points whose grains cover 0,
Φ′ = {Xi ∈ Φ : 0 ∈ Xi ⊕ Gi},

form an independent thinning of points of Φ.

– p. 21



Exercise: coverage in Poisson-BM

Stationary coverage: N is Poisson(λE[|Ǧ|]), where
Ǧ = {−y : y ∈ G}. Indeed:

pk : = P
{

#{i : 0 ∈ Xi ⊕ Gi} ≥ k
}

= P{Φ′(Rd) ≥ k} ,

where points whose grains cover 0,
Φ′ = {Xi ∈ Φ : 0 ∈ Xi ⊕ Gi},

form an independent thinning of points of Φ.
Φ′ is a non-homogeneous Poisson process w intensity at x
equal to λ′(x) = λP{0 ∈ x ⊕ G} = λP{x ∈ Ǧ}.
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Exercise: coverage in Poisson-BM

The total intensity of points whose grains cover 0 is
∫

Rd

λ′(x) dx = λ

∫

Rd

P{x ∈ Ǧ} dx

= λE
[∫

Rd

1(x ∈ Ǧ) dx
]

= λE[|Ǧ|] .
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Exercise: coverage in Poisson-BM

The total intensity of points whose grains cover 0 is
∫

Rd

λ′(x) dx = λ

∫

Rd

P{x ∈ Ǧ} dx

= λE
[∫

Rd

1(x ∈ Ǧ) dx
]

= λE[|Ǧ|] .

Consequently

pk =

∞∑

n=k

e−λE[|Ǧ|] (λE[|Ǧ|])n

n!
.

In particular p0 = e−λE[|Ǧ|].
– p. 22



Factorial moments of N

Back to the general GG model. For n ≥ 1, the k-th factorial
moment of (an integer valued rv) N is defined as

E[N (k)] := E
[

N (N − 1)+ . . . (N − k + 1)+
]

.
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Factorial moments of N

Back to the general GG model. For n ≥ 1, the k-th factorial
moment of (an integer valued rv) N is defined as

E[N (k)] := E
[

N (N − 1)+ . . . (N − k + 1)+
]

.

FACT Factorial moments characterize the distribution of the
random variable. In particular, for k ≥ 1

pk =

∞∑

n=k

(−1)n−k

(
n − 1

k − 1

)

n!E[N (n)] ,

P{N = k } =

∞∑

n=k

(−1)n−k

(
n

k

)

n!E[N (n)] ,

E[zN ] =

∞∑

n=0

(z − 1)nn!E[N (n)] , z ∈ [0, 1] .
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Campbell’s formula (Little’s law, mass transport principle)

E[N (1)] = E[N ]

= E
[ ∑

Xi∈Φ

1(0 ∈ Ci)
]

Campbell =

∫

Rd

Px{0 ∈ Cx}λdx

symmetry =

∫

Rd

P0{x ∈ C0}λdx

=

∫

Rd

p(x)λdx = λE0
[|C0|] ,

where p(x) is the typical grain coverage probability.
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Higher-order extensions

For n ≥ 1, quite similarly

E[N (n)] = E
[ ∑

Xi1
,Xi2

,...,Xin
∈Φ

distinct

1
(

0 ∈
n⋂

j=1

Cij

)]

higher-order Campbell =

∫

Rd

Px1,...,xn

(

0 ∈
n⋂

j=1

Cxj

)

λ(n)(d(x1 . . . xn))

where Px1,...,xn is n-fold Palm distribution of Φ and λ(n)(·) is
n-fold factorial moment measure of Φ.
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Higher-order extensions

For n ≥ 1, quite similarly

E[N (n)] = E
[ ∑

Xi1
,Xi2

,...,Xin
∈Φ

distinct

1
(

0 ∈
n⋂

j=1

Cij

)]

higher-order Campbell =

∫

Rd

Px1,...,xn

(

0 ∈
n⋂

j=1

Cxj

)

λ(n)(d(x1 . . . xn))

where Px1,...,xn is n-fold Palm distribution of Φ and λ(n)(·) is
n-fold factorial moment measure of Φ.
In case of Poisson Φ of intensityλ(·),

Px1,...,xn

Φ = PΦ+
∑n

j=1 δxj
(Slivnyak’s Thm)

and λ(n)(d(x1 . . . xn)) = λ(dx1) . . . λ(dxn).
– p. 25



Stationary coverage via moment expansion

COR

pk =

∞∑

n=k

(−1)n−k

(
n − 1

k − 1

)

n!

∫

Rd

Px1,...,xn

(

0 ∈
n⋂

j=1

Cx

)

× λ(n)(d(x1 . . . xn))

and similarly for P{N = k }, E[zN ].
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Coverage model for wireless
communications and its relations to a

Poisson-Dirichlet process
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SINR

SINR=Signal-to-Interference-and-Noise Ratio

SINR =

POWER of TAGGED RECEIVED SIGNAL

POWER of ALL OTHER RECEIVED SIGNALS (and/or) NOISE

SINR characterizes the capacity of the communication
channel; i.e., the number of bits/second that can be reliably
sent in this channel.
Formalization on the ground of information theory.

noise

usful signal
received power
(interference)

all other
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SINR coverage model

SINR (Signal-to-Interference-and-Noise Ratio) cell:

Ci = Ci(τ ) =

{

y ∈ R
2 :

Si/ℓ(|y − Xi|)

W + γ
∑

j 6=i Sj/ℓ(|y − Xj|)
≥ τ

}

Φ = {Xi} hom. Poisson p.p. on R2 of int. λ; locations of
wireless transmitters (extension to Rd straightforward)

Φ̃ = {(Xi, Si)} independently marked Φ, Si ∼ S ≥ 0,
E[S2/β] < ∞; random signal propagation effects,
“shadowing”, “fading”

W ≥ 0, r.v. independent of Φ̃; “noise” power

ℓ(r) = (Kr)β, (K ≥ 0, β > 2) “path-loss” function,

τ, γ ≥ 0 parameters.
– p. 29



SINR coverage model
⋃

i

Ci or {Ci}

SINR coverage model Baccelli, BB (2001),
shot-noise coverage model in Chiu, Stoyan, Kendall, Mecke (2013),
a germ grain model with dependent grains.
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SINR coverage model
⋃

i

Ci or {Ci}

SINR coverage model Baccelli, BB (2001),
shot-noise coverage model in Chiu, Stoyan, Kendall, Mecke (2013),
a germ grain model with dependent grains.

When γ = 0 (no interference) SINR grains (cells) are
independent; Boolean Model

When W = 0 (no noise) and β → ∞ (“strong path-loss”)
SINR cells converge to Voronoi cells,

Playing with W → 0 and β → ∞ SINR becomes
Johnson-Mehl.

– p. 30



– p. 31



OUTLINE of the remaining part

Palm and stationary coverage characteristics of the
model,

Poisson-Dirichlet processes,

Relations to the coverage model.
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Palm coverage probabilities
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Coverage by the typical cell

Without loss of generality γ = 1.

Under Palm P0, cell C0 of X0 = 0, x ∈ R2, |x| = r,

P0{x ∈ C0} = P0

{

S0 ≥ τWℓ(r) + τℓ(r)
∑

i 6=0

Si

ℓ(|y − Xi|)

}

with S0, W and
∑

i 6=0(...) being independent.
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Coverage by the typical cell

Without loss of generality γ = 1.

Under Palm P0, cell C0 of X0 = 0, x ∈ R2, |x| = r,

P0{x ∈ C0} = P0

{

S0 ≥ τWℓ(r) + τℓ(r)
∑

i 6=0

Si

ℓ(|y − Xi|)

}

with S0, W and
∑

i 6=0(...) being independent.

The Laplace transform LI of I =
∑

i 6=0(...) (Poisson

shot-noise) is well known. In particular for ℓ(r) = (Kr)β

LI(ξ) = exp{−λK−2ξ2/βπΓ(1 − 2/β)E[S
2
β ]}
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Coverage by the typical cell

Without loss of generality γ = 1.

Under Palm P0, cell C0 of X0 = 0, x ∈ R2, |x| = r,

P0{x ∈ C0} = P0

{

S0 ≥ τWℓ(r) + τℓ(r)
∑

i 6=0

Si

ℓ(|y − Xi|)

}

with S0, W and
∑

i 6=0(...) being independent.

The Laplace transform LI of I =
∑

i 6=0(...) (Poisson

shot-noise) is well known. In particular for ℓ(r) = (Kr)β

LI(ξ) = exp{−λK−2ξ2/βπΓ(1 − 2/β)E[S
2
β ]}

P0{x ∈ C0} can be numerically calculated using
“standard” techniques for arbitrary distribution of S.
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Coverage by the typical cell; exponential S

Assume S exponential (mean 1 without loss of generality).
With |x| = r

P0{x ∈ C0}

= LW

(

τ (Kr)β
)

× LI

(

τ (Kr)β
)

= LW

(

τ (Kr)β
)

× exp
{

−λr2τ 2/βπΓ(1 − 2/β)Γ(1 + 2β)/β
}

Baccelli, BB (2003), cf also Zorzi, Pupolin (1994) for an early
idea.
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Coverage by the typical cell; exponential S

Assume S exponential (mean 1 without loss of generality).
With |x| = r

P0{x ∈ C0}

= LW

(

τ (Kr)β
)

× LI

(

τ (Kr)β
)

= LW

(

τ (Kr)β
)

× exp
{

−λr2τ 2/βπΓ(1 − 2/β)Γ(1 + 2β)/β
}

Baccelli, BB (2003), cf also Zorzi, Pupolin (1994) for an early
idea.
This very simple observation inspired amazing amount of
subsequent works in the engineering literature...
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Stationary coverage probabilities
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Coverage of the typical location

SINR coverage probability

P = P{0 ∈
⋃

i

Ci} .

More generally, k-coverage probability (k ≥ 1)

P(k) = P{N ≥ k} ,

where N :=
∑

i 1(0 ∈ Ci) is the number of cells
covering 0.
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Coverage of the typical location

SINR coverage probability

P = P{0 ∈
⋃

i

Ci} .

More generally, k-coverage probability (k ≥ 1)

P(k) = P{N ≥ k} ,

where N :=
∑

i 1(0 ∈ Ci) is the number of cells
covering 0.

Model invariance: P(k) depend only on β, W and

a :=
λπE[(S)

2
β ]

K2
.

In case W = 0, P(k) depend only on β. (To be explained).
– p. 37



Special functions I

For n ≥ 1, define functions of x ≥ 0

In,β(x) =

2n
∞∫

0

u2n−1e−u2−uβxΓ(1−2/β)−β/2

du

βn−1(Γ(1 − 2/β)Γ(1 + 2/β))n(n − 1)!
.

In particular

In,β(0) =
2n−1

βn−1(C′(β))n
,

where C′(β) = Γ(1 − 2/β)Γ(1 + 2/β).
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Special functions II

For n ≥ 1, define functions of (x1, . . . , xi) ≥ 0

Jn,β(x1, . . . , xn)

=
(1 +

∑n
j=1 xj)

n

∫

[0,1]n−1

∏n−1
i=1 v

i(2/β+1)−1
i (1 − vi)

2/β

∏n
i=1(xi + ηi)

dv1 . . . dvn−1,

where 





η1 = v1v2 . . . vn−1

η2 = (1 − v1)v2 . . . vn−1

η3 = (1 − v2)v3 . . . vn−1

· · ·

ηn = 1 − vn−1.
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Stationary coverage probabilities

The SINR k-coverage probability P(k) = P(k)(τ ) is
equal to

P(k) =

⌈1/τ⌉
∑

n=k

(−1)n−k(n−1
k−1)τ

−2n/β
n E[In,β(Wa−β/2)]Jn,β(τn) ,

where τn := τn(τ ) = τ
1−(n−1)τ

; Keeler, BB, Karray (2013).
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Stationary coverage probabilities

The SINR k-coverage probability P(k) = P(k)(τ ) is
equal to

P(k) =

⌈1/τ⌉
∑

n=k

(−1)n−k(n−1
k−1)τ

−2n/β
n E[In,β(Wa−β/2)]Jn,β(τn) ,

where τn := τn(τ ) = τ
1−(n−1)τ

; Keeler, BB, Karray (2013).

For τ ≥ 1 we have ⌈1/τ⌉ = 1. Thus P(k) = 0 for all
k ≥ 2 and

P = P(1) =
2(τ )−2/β

Γ(1 + 2
β)

∫ ∞

0

ue−u2Γ(1−2/β)LW

(

a−β/2uβ
)

du .

Dhillon et al. (2012).
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Mapping on 1D and an invariance property

Denote powers received at 0 by

Θ :=
{

Yi := Si/ℓ(|Xi|), Xi ∈ Φ
}

.

Θ is inhomogeneous Poisson pp on (0,∞) with intensity

measure 2a/β t−1−2/β dt. (Recall, a =
λπE[(S)

2
β ]

K2 .)
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Mapping on 1D and an invariance property

Denote powers received at 0 by

Θ :=
{

Yi := Si/ℓ(|Xi|), Xi ∈ Φ
}

.

Θ is inhomogeneous Poisson pp on (0,∞) with intensity

measure 2a/β t−1−2/β dt. (Recall, a =
λπE[(S)

2
β ]

K2 .)

k-coverage probabilities and all functionals of Θ (and W )
depend ony on β and a (and W ), but are invariant w.r.t.
the distribution of S.
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Mapping on 1D and an invariance property

Denote powers received at 0 by

Θ :=
{

Yi := Si/ℓ(|Xi|), Xi ∈ Φ
}

.

Θ is inhomogeneous Poisson pp on (0,∞) with intensity

measure 2a/β t−1−2/β dt. (Recall, a =
λπE[(S)

2
β ]

K2 .)

k-coverage probabilities and all functionals of Θ (and W )
depend ony on β and a (and W ), but are invariant w.r.t.
the distribution of S.

This invariance helpful in various proofs, where for
mathematical convenience S is often assumed
exponential or deterministic, with the results generalized
to arbitrary S by appropriate modification of λ.
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Poisson-Dirichlet processes
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Poisson Dirichlet processes

Let Θα = {Yi} by Poisson process on (0,∞) with
intensity t−1−α dt, with α ∈ [0, 1).
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Poisson Dirichlet processes

Let Θα = {Yi} by Poisson process on (0,∞) with
intensity t−1−α dt, with α ∈ [0, 1). Denote

{

V ′
i :=

Yi
∑

j Yj
, Yi ∈ Θα

}

;

{V ′
i } is called Poisson-Dirichlet PD(α, 0) pp.
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Poisson Dirichlet processes

Let Θα = {Yi} by Poisson process on (0,∞) with
intensity t−1−α dt, with α ∈ [0, 1). Denote

{

V ′
i :=

Yi
∑

j Yj
, Yi ∈ Θα

}

;

{V ′
i } is called Poisson-Dirichlet PD(α, 0) pp.

The same construction with Θα replaced by Θθ of
intensity θt−1e−t dt, with θ > 0, leads to PD(0, θ);
Kingman (1975).
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Poisson Dirichlet processes

Let Θα = {Yi} by Poisson process on (0,∞) with
intensity t−1−α dt, with α ∈ [0, 1). Denote

{

V ′
i :=

Yi
∑

j Yj
, Yi ∈ Θα

}

;

{V ′
i } is called Poisson-Dirichlet PD(α, 0) pp.

The same construction with Θα replaced by Θθ of
intensity θt−1e−t dt, with θ > 0, leads to PD(0, θ);
Kingman (1975).

Both belong to a two-parameter family PD(α, θ),
α ∈ [0, 1), θ > −α, whose Poisson construction is
slightly more involved; Pitman, Yor (1997).
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Size biased representation of PD(α, θ)

Let

V1 = U1, Vi = (1 − U1) . . . (1 − Ui−1)Ui, i ≥ 2,

where U1, U2, . . . are independent random variables on
(0, 1) with Ui ∼ Beta(1 − α, θ + iα);
stick-breaking rule or residual allocation model.
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Size biased representation of PD(α, θ)

Let

V1 = U1, Vi = (1 − U1) . . . (1 − Ui−1)Ui, i ≥ 2,

where U1, U2, . . . are independent random variables on
(0, 1) with Ui ∼ Beta(1 − α, θ + iα);
stick-breaking rule or residual allocation model.

{V1, V2, . . .} considered as a pp is PD(θ, α); Pitman,
Yor (1997).

(V1, V2, . . .) considered as a random vector is invariant
with respect to size-biased permutation. In fact, it is the
only distribution obtained from the stick-breaking model
with this property; Pitman (1996). Called also GEM model
after Griffith, Engen, McCloskey.
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Poisson-Dirichlet and SINR coverage
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SIR coverage and PD(α, 0) process

Denote Zi :=
Si/ℓ(|Xi|)

W+
∑

j 6=i Sj/ℓ(|Xj|)
= Yi

W+
∑

j 6=i Yj
.
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W+
∑

j 6=i Sj/ℓ(|Xj|)
= Yi

W+
∑

j 6=i Yj
.

Recall Θ = {Yi} is Poisson pp of intensity
2a/βt−1−2/β dt, on (0,∞), equal (modulo irrelevant in
this context constant 2a/β) to this of Θα, with α = 2/β.
Recall, Θα gives rise to PD(α, 0) via the same points’
normalization V ′

i = Yi∑
j Yj

.
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Recall, Θα gives rise to PD(α, 0) via the same points’
normalization V ′

i = Yi∑
j Yj

.

Ψ := {Zi} can be easy related to
Ψ′ := {Z′

i :=
Yi

W+
∑

j Yj
} via Z′

i = Zi/(1 + Zi).
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SIR coverage and PD(α, 0) process

Denote Zi :=
Si/ℓ(|Xi|)

W+
∑

j 6=i Sj/ℓ(|Xj|)
= Yi

W+
∑

j 6=i Yj
.

Recall Θ = {Yi} is Poisson pp of intensity
2a/βt−1−2/β dt, on (0,∞), equal (modulo irrelevant in
this context constant 2a/β) to this of Θα, with α = 2/β.
Recall, Θα gives rise to PD(α, 0) via the same points’
normalization V ′

i = Yi∑
j Yj

.

Ψ := {Zi} can be easy related to
Ψ′ := {Z′

i :=
Yi

W+
∑

j Yj
} via Z′

i = Zi/(1 + Zi).

Consequently, for W = 0 the SIR k-coverage probability

P(k) = P
{

V ′
(k) > τ/(1 + τ )

}

, where V ′
(1) > V ′

(2) > . . .

are ordered points of the PD(2/β, 0).
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Factorial moments of the SINR process

M ′(n)(t′1, . . . , t
′
n) := E

[
∑

(Z′
1,...,Z′

n)∈(Ψ′)×n

distinct

n∏

j=1

1(Z′
j > t′j)

]
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Factorial moments of the SINR process

M ′(n)(t′1, . . . , t
′
n) := E

[
∑

(Z′
1,...,Z′

n)∈(Ψ′)×n

distinct

n∏

j=1

1(Z′
j > t′j)

]

We have

M ′(n)(t′1, . . . t
′
n)

=n!

(
n∏

i=1

t̂
−2/β
i

)

In,β((W )a−β/2)Jn,β(t̂1, . . . , t̂n),

when
∑n

i=1 t
′
n < 1 and M ′(n)(t′1, . . . t

′
n) = 0 otherwise,

where t̂i = t̂i(t
′
1, . . . , t

′
n) := t′i

1−
n∑

j=1

t′j

;

Observe factorization of the noise contribution to the
factorial moment measures; BB, Keeler (2014).
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Densities of the SINR process

For
∑n

i=1 t
′
n < 1

µ′(n)(t′1, . . . t
′
n) := (−1)n

∂nM ′(n)(t′1, . . . t
′
n)

∂t′1 . . . ∂t
′
n

= Īn,β((W )a−β/2) cn,2/β,0

( n∏

i=1

(t′i)
−(2/β+1)

)(

1 −
n∑

j=1

(t′j)
)2n/β−1

︸ ︷︷ ︸

density of PD(2/β, 0), Handa (2009)
where

cn,α,θ =

n∏

i=1

Γ(θ + 1 + (i − 1)α)

Γ(1 − α)Γ(θ + iα)
,

and
Īn,β(x) =

In,β(x)

In,β(0)
;

BB, Keeler (2014). – p. 48



Factorial moment expansions

Expansions of general characteristics φ of the SINR process

E[φ(Ψ′)] = φ(∅) +
∞∑

n=1

∫

(0,1)n
φt′1,...,t

′
n
µ′(n)(t′1, . . . , t

′
n) dt

′
n . . . dt′1 ,

where

φt′1 = φ({t′1}) − φ(∅)

φt′1,t
′
2
=

1

2

(

φ({t′1, t
′
2}) − φ({t′1}) − φ({t′2}) + φ(∅)

)

. . .

φt′1,...,t
′
n
=

1

n!

n∑

k=0

(−1)n−k
∑

t′
i1

,...,t′
ik

distinct

φ({t′i1, . . . , t
′
ik
}) .

BB (1995).
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Numerical examples

– p. 50



SINR k-coverage probability
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Coverage with interference cancellation and signal combination
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The increase of the coverage probability when two strongest
signals are combined (SC) or the second strongest signal is
canceled from the interference (IC).
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Conclusions

We have seen a Poisson-Dirichlet process in some
wireless communication model, where it describes
fractions of the SINR spectrum. But Poisson-Dirichlet
processes appear in several apparently different
contexts.
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Conclusions

We have seen a Poisson-Dirichlet process in some
wireless communication model, where it describes
fractions of the SINR spectrum. But Poisson-Dirichlet
processes appear in several apparently different
contexts.

Two-parameter family of Poisson-Dirichlet processes is
used in math/economic models.
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Conclusions, cont’d

In math/physics “our” PD(α, 0) process appears as the
thermodynamic (large system) limit in the low
temperature regime of Derrida’s random energy model
(REM). It is also a key component of the so-called Ruelle
probability cascades, which are used to represent the
thermodynamic limit of the Sherrington-Kirkpatrick
model for spin glasses (types of disordered magnets).
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Conclusions, cont’d

In math/physics “our” PD(α, 0) process appears as the
thermodynamic (large system) limit in the low
temperature regime of Derrida’s random energy model
(REM). It is also a key component of the so-called Ruelle
probability cascades, which are used to represent the
thermodynamic limit of the Sherrington-Kirkpatrick
model for spin glasses (types of disordered magnets).

“Our” invariance of the SINR coverage model with
respect to the distribution of S can be related to
Bolthausen-Sznitman invariance property heavily used
to study the Sherrington-Kirkpatrick model; cf
Panchenko (2013).
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More details in:
B.B and H. P. Keeler, SINR in wireless networks and the
Two-Parameter Poisson-Dirichlet process IEEE Wireless
Comm. Letters, 2014.

B.B. and H. P. Keeler, Studying the SINR process of the
typical user in Poisson networks by using its factorial moment
measures, IEEE Trans. Inf. Theory, 2015.
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Thank you for today.
Tomorrow: Connectivity
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